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An improved method for the description of hierarchical complex systems by means of a Fokker-Planck
equation is presented. In particular the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm for con-
straint problems is used to minimize the distance between the numerical solutions of the Fokker-Planck
equation and the empirical probability density functions and thus to estimate properly the drift and diffusion
term of the Fokker-Planck equation. The optimization routine is applied to a time series of velocity measure-
ments obtained from a turbulent helium gas jet in order to demonstrate the benefits and to quantify the
improvements of this optimization routine.
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I. INTRODUCTION

Most complex systems can be assigned to the two follow-
ing classes: the time dependent complex systems and the
scale dependent complex systems �1�. Examples for the first
class are nonlinear chaotic dynamical systems, while systems
with a scaling behavior over a wide range of different scales,
like turbulence, financial markets, or earthquakes are ex-
amples for the second class. Besides the characterization of
new features of these complex systems it is a challenge to
derive effective underlying equations for their description. A
successful approach to such systems is a description through
stochastic equations �Langevin or corresponding Fokker-
Planck equations�, which may involve nonlinearity in the
deterministic as well as in the stochastic part. This approach
has become particularly interesting, as it has been shown that
it is possible to estimate the underlying stochastic equations
directly by data analysis.

The verification of the preconditions and the application
of this approach to time dependent systems has been de-
scribed in �2–6�. It was successfully applied to the descrip-
tion of noisy electrical circuits �4�, systems with feedback
delay �7�, traffic flow data �8�, physiological time series
�9,10�, and metrological processes �11�, to mention just a
few. Also the second class, the scale dependent complex sys-
tems, which in general are not stationary in scale, can be
analyzed successfully by this approach. In this class, stochas-
tic processes evolving in scale are reconstructed. A complete
statistical description, i.e., general n scale joint statistics, for
certain classes of systems, such as the roughness of surfaces
�12,13�, turbulence �14–17�, cosmic microwave background
radiation �18�, and finance �19–21�, can be obtained. Though
in general a reconstruction of time series for the scale depen-
dent complex systems is not possible in such a simple way as
for the first class, certain promising attempts have been made
�13,22�.

The use of Langevin and Fokker-Planck equations is
therefore a very promising method for time series analysis.
The critical part in this method is the correct estimation of
the coefficients of the Langevin or the corresponding Fokker-
Planck equation, which are the so-called Kramers-Moyal co-

efficients. A correct estimation of these coefficients is crucial
to a good description of the underlying processes. The esti-
mation of the Kramers-Moyal coefficients is complicated by
the fact that the approach itself is based on the assumption of
Markov properties. This assumption is valid for many sys-
tems for big and small but finite time steps. The main diffi-
culties arise from the fact that for the estimation of the un-
derlying equations it is necessary to calculate the limit of
infinitely small time steps, where the Markov properties are
often no longer valid. For more details concerning this dis-
cussion see �23–25�. Further concerns about systematic esti-
mation problems were discussed in �26�. Due to these prob-
lems in the estimation process it was necessary until now to
apply manual corrections �20� to the determined Kramers-
Moyal coefficients in some cases in order to get an optimal
description. For time dependent systems these problems
were addressed in �27� by proposing an improved estimation
method for the necessary parameters. This improved estima-
tion method utilizes the comparison of the probability den-
sity functions �PDFs� generated by the Langevin equation
and those computed directly from the empirical data.

In this work we address the crucial problem of the correct
estimation of the coefficients for the Fokker-Planck equation
for the second class of systems with scale dependent com-
plexity. It should be noted that there is no principle problem
to transfer the results of this work to the class of time depen-
dent complex systems. Furthermore, the methods proposed
in this work can be regarded as a systematic way to include
the manual corrections described, for example, in �20�. In
general for the class of scale dependent complex systems the
processes are not stationary in scale and so it is often neces-
sary to use numerical instead of analytic solutions. Therefore
the knowledge of the solution to the Fokker-Planck equation
will not be global but pointwise in the space spanned by the
coefficients of the Fokker-Planck equation. In order to utilize
the comparison of the PDFs, as it has been suggested for the
first class of complex systems �27�, optimization routines are
proposed to find the optimal set of parameters, which implies
the best agreement between the numerical solutions of the
Fokker-Planck equation and the PDFs computed directly
from the data.
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In detail, in Sec. II the basic features for stochastic pro-
cesses evolving in scale are discussed. A description of the
optimization routines is given in Sec. III. First results for
turbulence data are shown in Sec. IV and insights are pointed
out for this type of data. Further applications of the discussed
methods are shown in Sec. V. We finish with some conclud-
ing remarks in Sec. VI.

II. FOKKER-PLANCK EQUATION

We start with a situation where for a complex system
some amount of data x�t� is given. Here x denotes the de-
scribing quantity, such as heights for surfaces or velocity for
turbulent fields and t denotes a time or a space variable. For
simplicity we assume that x is a one-dimensional quantity,
noting that higher dimensional systems can be treated in a
similar way �28�. The scale dependent features are described
by y�t ,��, where � denotes the selected scale and y a quantity
describing the disorder �complexity� of x�t� in a
�-neighborhood. y may be a local roughness or any other
local quantity �see, for example, �29��. Here we define y as a
simple increment

y�t,�� ª x�t + �� − x�t� . �1�

In order to obtain a statistically complete description of the
system with respect to y, the joint probability density func-
tion p�y1 ,�1 , . . . ,yn ,�n� of y at different scales �i has to be
known. The joint PDF is constructed from the set of yi ob-
tained at the same t value. In the following the joint statistics
of these increment processes are considered. Because of the
involved scales the dimension of the joint probability density
can be very high. Therefore it is in general very difficult to
compute this joint PDF from empirical time series. However,
the description and computation can be highly simplified if
Markov properties hold. This is the case if

p�yi,�i�yi+1,�i+1, . . . ,yn,�n� = p�yi,�i�yi+1,�i+1� �2�

is true for all i and n� i. Without loss of generality we take
�i��i+1. It should be noted that the Markov property can be
tested for a given data set �3,15,17,20,30�. For valid Markov
properties the joint probability density can be substantially
simplified:

p�y1,�1, . . . ,yn,�n� = p�y1,�1, �y2,�2� ¯ p�yn−1,�n−1�yn,�n�

�p�yn,�n� . �3�

Because the conditional PDFs of first order �the right side of
Eq. �2�� provide a complete description of a Markov process,
they are the basic quantity to measure the correctness of the
description of a Markov process. This issue and the impor-
tance of using conditional PDFs and not unconditional PDFs
for the verification of the estimated process are discussed in
�15,19,20,31�.

For Markov processes the conditional probability density
satisfies a master equation, which can be put into the form of
a Kramers-Moyal expansion for which the Kramers-Moyal
coefficients D�k��y ,�� are defined as the limit ��→0 of the
conditional moments:

D�i��x,�� = lim
��→0

�

i ! ��
�

−�

+�

�x� − x�ip�x�,� − ���x,��dx�.

�4�

For a general stochastic process, all Kramers-Moyal coef-
ficients are different from zero. According to Pawula’s theo-
rem, however, the Kramers-Moyal expansion stops after
the second term, provided that the fourth order coefficient
D�4��y ,�� vanishes �15,16,32�. In that case, the Kramers-
Moyal expansion reduces to a Fokker-Planck equation
�32,33�

− �
�

��
p�y,��y0,�0� = �−

�

�y
D�1��y,�� +

�2

�y2

�D�2��y,���p�y,��y0,�0� . �5�

Note that, in contrast to the usual definition of the Fokker-
Planck equation, here both sides are multiplied by �. This
corresponds to a logarithmic length scale as used in �34�.
This choice is convenient for analyzing fractal scaling
features, but does not imply any loss of generality.
D�1��x ,�� and D�2��x ,�� are the drift or diffusion coefficients,
respectively. It should be noted that the conditional PDF
p�x� ,�−�� �x ,�� can be estimated directly from the data, and
therefore the Kramers-Moyal coefficients can be determined
by using Eq. �4�.

III. OPTIMIZATION

For the optimized estimation of the Kramers-Moyal coef-
ficients an implementation of the limited-memory Broyden-
Fletcher-Goldfarb-Shanno algorithm for constraint problems
�L-BFGS-B algorithm� �35–38� is used, which is described
in the Appendix in detail. The starting point is the approxi-
mation of the Kramers-Moyal coefficients determined by the
evaluation of Eq. �4�. The coefficients are approximated by
functions with free parameters qi

�j�,

D̃�1��y,�� = f�y,�,q0
�1�, . . . ,qm̃

�1�� , �6�

D̃�2��y,�� = g�y,�,q0
�2�, . . . ,qñ

�2�� . �7�

Solving Eq. �5� as proposed in �15� by using D̃�1��y ,�� and

D̃�2��y ,�� as the drift and diffusion coefficient, respectively,
leads to a conditional PDF of first order
pnum�yi−1 ,�i−1 �yi ,�i ,q0

�1� , . . . ,qm̃
�1� ,q0

�2� , . . . ,qñ
�2��. In order to

compare the numerical solutions of the Fokker-Planck equa-
tion with empirical probabilities, it is better to use joint in-
stead of conditional probabilities. Therefore the two follow-
ing joint PDFs will be compared:

pn = pnum�yi−1,�i−1�yi,�i,q0
�1�, . . . ,qñ

�2��p�yi,�i� , �8�

pref = p�yi−1,�i−1;yi,�i� . �9�

As a measure, to calculate the agreement between these two,
the weighted mean square error in logarithmic space is used,
which is defined as
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dM�pn,pref� ª
�

R

�pn + pref��ln pn − ln pref�2dyidyi−1

�
R

�pn + pref��ln2 pn + ln2 pref�dyidyi−1

.

�10�

Here R denotes the subspace, where an estimate of pref from
empirical data is possible and pref �0. The L-BFGS-B algo-
rithm minimizes the nonlinear function dM�pn , pref ,q� under
the constraint that D�2��y ,�� remains positive and the slope of
D�1��y ,�� with respect to � remains negative. This may be
denoted for each component i of q as Li�qi�Ui, where q is
the Nq= m̃+ ñ dimensional vector of all the parameters
q0

�1� , . . . ,qm̃
�1� ,q0

�2� , . . . ,qñ
�2� and L and U are choosen in accor-

dance with the constraints.

IV. RESULTS FOR TURBULENCE

The procedure described above is now applied to experi-
mental data. The data considered were obtained from a cryo-
genic axisymmetric helium gas jet at a Reynolds number of
7.6�105. The data set contain 1.6�107 measurements of the
velocity in the center of a free jet, where the distance be-
tween the anemometer and the nozzle was 40 D and the
diameter D of the nozzle was 2 mm. The Markov-Einstein
coherence length �Markov is 8 sample steps for this data set.
�Markov denotes the length, below which the data set does not
exhibit Markov properties, as defined in Eq. �2�. The integral
length, which corresponds to the largest correlated structure,
is calculated from the autocorrelation function and is for our
data 715 sample steps. For further details we refer to �39�.
This high Reynolds number data set has the benefit that the
region between the Markov-Einstein coherence length �30�
and the integral length spans a large interval of scales. This is
important because below the Markov-Einstein coherence
length Eq. �5� cannot be applied due to the missing Markov
properties. Above the integral length the properties of the
turbulent cascade are not present anymore.

A first approximation of the Kramers-Moyal coefficients,
for the turbulence data used here, is determined by means of
their definition in Eq. �4�. Examining these first estimates of
the Kramers-Moyal coefficients for a fixed scale �, it be-
comes evident that the first coefficient can be represented
very well with a polynomial of first order and the second one
with a polynomial of second order, cf. also �15�. Therefore
the Kramers-Moyal coefficients are parametrized as

D̃�1��y� = q0
�1� + q1

�1�y , �11�

D̃�2��y� = q0
�2� + q1

�2�y + q2
�2�y2, �12�

for a fixed scale �. Examining the dependence of the
Kramers-Moyal coefficients on the scale �, the picture is
much more ambiguous. Therefore the range of scales is di-
vided into small half-open intervals ��i

left ,�i
right�, where

�i
leftdenotes the left and �i

right the right border of the scale
interval. The optimization is performed for each scale inter-

val independently. Thus as a good local approximation there
is no dependency of the Kramers-Moyal coefficients on the
scale in each of these intervals, but arbitrary changes are
allowed if going from one scale interval to the next. In such
a way we account for a more complex dependency on the
scale.

Though working with constant coefficients qi
�j� in each

scale interval constitutes an approximation it has two advan-
tages. The first is that the smoothness of the resulting func-
tions qi

�j� with respect to the scale � provides a first assess-
ment of the robustness of the optimization process, if we
assume the true coefficients to be smooth functions with re-
spect to the scale. The second and more important advantage
is that the number of variables Nq, or in other words, the
dimension of the space where the optimization takes place, is
smaller. This is important because the optimization in a
lower dimensional space can be much faster than one in a
high dimensional space. In addition the number of local
minima may increase rapidly with the addition of more vari-
ables and therefore the localization of the global minimum
becomes more difficult.

The first estimates are then used to reconstruct the condi-
tional probability density in each scale interval. In order to
assess the quality of the solution the distance dM between the
probability density of the data and the reconstructed prob-
ability density by the estimated process equation is calcu-
lated. Thereby, the distance dM�pn , pref� given in Eq. �10� is
applied. Now the iterative algorithm, described in the Appen-
dix is used to minimize dM�pn , pref� with respect to q.

The optimization is performed for scales ranging from
�Markov to 80 750 sample steps. The scale intervals are cho-
sen here in such a way that

�i
right = max	 �i

left

0.9
;�i

left + �Markov
 . �13�

The initial estimate of the Kramers-Moyal coefficients by
means of their definition in Eq. �4� can only be performed for
a scale larger than �limes, where �limes��Markov. In our case
�limes=5�Markov. This is due to the procedure to perform the
limit in Eq. �4� numerically, for more details see, e.g., �15�.
Therefore as initial estimates the values of the Kramers-
Moyal coefficients at the scale �limes are used for scales �
��limes. The limit in Eq. �4� is calculated without the use of
possible refinements in order to test the robustness of the
optimization routine. The average number of iterations be-
fore the optimization stopped was around 25. The values of
the distance measure between the PDFs of the original data
and the reconstructed ones using the initial estimates of the
Kramers-Moyal coefficients are displayed in Fig. 1 as open
symbols. It should be noted that each symbol represents one
of the scale intervals, where an independent optimization
took place.

Three ranges can be identified. The first range spans from
�Markov to �limes. Here the limit could not be calculated in a
proper way and constant initial estimates of the Kramers-
Moyal coefficients have been used, resulting in a nearly con-
stant distance measure in this range. The second range spans
from �limes to �optimal, where �optimal is around 300 sample
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steps. We will see later that for �optimal the initial estimates
seem already to be optimal. In this range the distance mea-
sure decreases monotonically with increasing scale �. This
may be due to a better description of the data with increasing
�, or due to a better performance of the initial estimate of the
Kramers-Moyal coefficients, or due to both. In the third
range the distance measure increases after the minimum at
�optimal, which marks the border between the second and the
third range.

Performing the optimization routine described above, the
distance measure between the PDFs of the original data and
the reconstructed ones using the optimization routine is ob-
tained. The distance measure for the optimized PDFs is dis-
played in Fig. 1 as black dots. For very small scales �
	�limes the distance measure remains constant or increases
slightly. For a very broad range of scales the distance mea-
sure then declines monotonically, until it saturates for very
large scales. Interestingly a scale ���optimal exists, where the
distance function has approximately the same value for the
initially estimated coefficients and the optimized one. This
indicates that for �optimal the initial estimate of the Kramers-

Moyal coefficients is already optimal, as mentioned above.
We obtained similar results for other data sets.

In order to assess the significance of the results the intrin-
sic error is estimated. The data set is divided into subsets and
the distance between the distributions belonging to the cor-
responding subsets is calculated. This is done for different
sizes of subsets and then extrapolated to obtain the intrinsic
error for the whole data set. As seen in Fig. 1 the intrinsic
error is still smaller for scales up to 104 than the distance
measure for the optimized coefficients, nevertheless to our
interpretation the magnitude of the distance measure is with
10−3 sufficiently small, see Figs. 2 and 3 for an example.

The graphs for the optimized coefficients q1
�1�, q0

�2�, and
q2

�2� are shown in Figs. 4–6. For q0
�1� and q1

�2� the initial esti-
mates as well as the optimized values are essentially equal to
zero. This result has an interesting physical context. It has
been shown that for a higher dimensional analysis a corre-
sponding nonvanishing q1

�2� term violates the second von
Kármán equation �42� �see �40� and Eqs. �31� and �32� in
�28��. In Fig. 6 two ranges can be identified. For smaller
scales ���additive, where �additive is around 2000 sample
steps, q2

�2� takes nonvanishing positive values, while it be-
comes zero for scales ���additive. The other nonvanishing
term of the second Kramers-Moyal coefficient, q0

�2�, in Fig. 5,
exhibits in the same region a power-law behavior which
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FIG. 2. Conditional probability density p�y��=1817� �y��
=2272�� of given data �solid curves� and reconstructed by the nu-
merical solution of the Fokker-Planck equation �dotted lines� using
the initial estimates of the Kramers-Moyal coefficients.
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FIG. 1. Distance measure dM between the PDFs of the original
data and the reconstructed ones using the numerical solutions of the
Fokker-Planck equation determined by the initial estimate of the
Kramers-Moyal coefficients �open symbols� and the optimized es-
timate of the Kramers-Moyal coefficients �black dots�. The dotted
line provides the expected distance if both distributions have been
produced by the same process.
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FIG. 3. Conditional probability density p�y��=1817� �y��
=2272�� of given data �solid curves� and reconstructed by the nu-
merical solution of the Fokker-Planck equation �dotted lines� using
the optimized estimates of the Kramers-Moyal coefficients.
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FIG. 4. The parameter q1
�1�. The initial estimate is denoted with

white circles while the optimized one is denoted with black circles.
The gray line shows the results for centered increments using opti-
mized coefficients.
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saturates for larger scales.The same is true for q1
�1� in Fig. 4,

but with a much higher accuracy. The exponent for q1
�1� in

this region is 0.069.
For the interpretation of �additive we note that q2

�2� repre-
sents the multiplicative noise in the system. Because this
term becomes zero for scales larger than �additive and also q1

�2�

is zero, the systems exhibits only additive noise above
�additive. By investigating the moments of the system, in Fig.
7, it can be noted that the moments start to saturate at a scale,
which is comparable to �additive. This indicates that �additive is
related to the integral length of the system. Further q2

�2�=0
for ���additive is in agreement with a Gaussian shape of the
PDF of velocity increments for large scales �43�.

V. APPLICATIONS

The method above provides a much better answer to the
central question of determining the correct Kramers-Moyal
coefficients; but besides this it enables us to discuss further
important questions arising from the description of scale de-
pendent systems with a Fokker-Planck equation. The first of
these questions is the optimal increment definition for the
stochastic process as given by Eq. �1�. We started our analy-
sis using the left-justified increments, which are more com-
mon in the literature. Using left-justified increments means
that the smaller increment is nested inside the larger incre-

ment and that both increments have the left end point in
common. For certain classes of systems this may introduce
additional correlations between the increments that are not
desired �6�. Thus it has been proposed to use centered incre-
ments instead of left-justified ones,

y�t,�� ª x�t +
�

2

 − x�t −

�

2

 . �14�

It is now possible to investigate the improvement of the de-
scription of the system by using centered increments. As a
criterion we use the distance between the numerical solution
of the Fokker-Planck equation, where the coefficients have
been optimized, and the empirical PDF. As can be seen in
Fig. 8, the distance measure exhibits smaller values for cen-
tered increments with the exceptions of very small and very
large scales. This indicates that the description of this special
system indeed can be improved using centered increments.
Reanalyzing the coefficients that are shown in Figs. 4–6 no
principal changes are found for the use of centered incre-
ments. In Figs. 4–6 additionally the results for the centered
increment analysis are shown. The biggest change is found
for q1

�1� and q0
�2� and for scales larger than the integral scale,

which are less important.
The second important question concerns the parametriza-

tion of the Kramers-Moyal coefficients. It is now possible to
determine whether a more complex parametrization of the
Kramers-Moyal coefficients, for example, by using higher
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FIG. 7. The second and fourth moment of the data set.
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FIG. 5. The parameter q0
�2�. The initial estimate is denoted with

white circles while the optimized one is denoted with black circles.
The gray line shows the results for centered increments using opti-
mized coefficients.
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q 2
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FIG. 6. The parameter q2
�2�. The initial estimate is denoted with

white circles while the optimized one is denoted with black circles.
The gray line shows the results for centered increments using opti-
mized coefficients.
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FIG. 8. Comparison of the distance function dM for different
settings. The dotted line provides the expected distance if both dis-
tributions have been produced by the same process.
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order polynomials, yields a better description of the system.
As a simple example to illustrate this, the question of asym-
metric Kramers-Moyal coefficients is considered. If the ini-
tial estimates of the Kramers-Moyal coefficients are exam-
ined, the functional form appears to be asymmetric in some
cases. This seems to be especially true for very large scales,
where the number of independent events becomes smaller. In
order to verify if the underlying stochastic process can be
better described by a separate parametrization for negative
and positive increments, the following parametrization is
chosen for the optimization:

D̃�1��y,�� = 	q0
�1� + q1

�1�y if y � 0

q2
�1� + q3

�1�y if y � 0,
�15�

D̃�2��y,�� = 	q0
�2� + q1

�2�y + q2
�2�y2 if y � 0

q3
�2� + q4

�2�y + q5
�2�y2 if y � 0.

�16�

As depicted in Fig. 8 the distance function takes smaller
values than for the original optimization, although the im-
provement is not as large as when using centered increments.
It should further be noted that an improvement is in this case
not surprising since the optimization is now performed in a
higher dimensional space and the space used for the original
optimization is a subspace of this second optimization. Nev-
ertheless this finding is in accordance with the proposed im-
portance of higher odd order terms in the diffusion coeffi-
cient �17�.

Therefore it may be inferred that a further improvement
of the description of this system may be provided by using
an appropriate increment definition rather than adopting the
assumption of asymmetric Kramers-Moyal coefficients. The
first provides a better description of the system by using
fewer free variables compared to the second. Another ques-
tions that may be answered in such a fashion is the use of
higher order Kramers-Moyal coefficients, especially the
fourth order coefficient because of its importance for the ap-
plication of the theorem of Pawula �32�.

VI. CONCLUSIONS

In this work we have shown a practical way to implement
an optimization routine to improve the description of hierar-
chical systems by means of a Fokker-Planck equation. In
order to do so, first an estimate of the Kramers-Moyal coef-
ficients using their definition in Eq. �4� is calculated. This
initial estimate is then used to solve the Fokker-Planck equa-
tion numerically and to obtain as a solution the conditional
probability density functions �PDFs� of first order. As a next
step the distance between this reconstructed conditional
probability and the one obtained directly from the time series
is determined using Eq. �10�. This procedure forms the basis
of our optimization routine. A parametrization of the initial
estimate of the Kramers-Moyal coefficients is chosen with a
specified number of variables Nq. The L-BFGS-B algorithm
is employed to minimize the distance between the numerical
solutions of the Fokker-Planck equation and the empirical
PDFs by adjusting the free variables. The L-BFGS-B algo-
rithm is an algorithm which is very effective in the case of an

optimization of many variables, which may be constrained.
Therefore the method proposed here will also be effective for
very complex parametrization, as long as these parametriza-
tions are not misspecified.

We applied the optimization routine to a time series of
velocity measurements obtained from a cryogenic axisym-
metric helium gas jet. We demonstrated the benefits of this
optimization routine. First, it is possible to obtain values of
the Kramers-Moyal coefficients for much smaller scales, due
to the fact that it is no longer necessary to calculate a limit in
scale which is the bottleneck of the original Kramers-Moyal
method. Second, the optimized coefficients produce numeri-
cal solutions of the Fokker-Planck equation that are much
closer to the empirical PDFs than those produced by the
initial estimates. Third, possible systematic errors in the clas-
sical estimation routine of the Kramers-Moyal coefficients
that have been pointed out in the literature can be avoided
using this optimization routine. Fourth, the optimized coeffi-
cients show remarkable simple functional forms in a large
scaling region, while the behavior of the initial estimates is
much more ambiguous. At last the results produced by this
optimization routine are remarkably stable. Independent op-
timizations have been performed for small intervals in scale
bordering on each other, producing estimates which are very
smooth with respect to the scale. Therefore this method pro-
vides the means to determine the Kramers-Moyal coeffi-
cients with much more accuracy or to determine correct
Kramers-Moyal coefficients for small data sets.

Possible applications for this refined approach have been
shown. First, the question of the appropriate increment defi-
nition has been considered. It has been shown that by using
centered increments instead of left-justified ones, the descrip-
tion of the underlying stochastic process for our example
system can be improved. Second, the question of the optimal
parametrization of Kramers-Moyal coefficients in the
Fokker-Planck equation has been considered. It was shown
that in our case an asymmetric parametrization provides only
a slight improvement. This aspect interests us because it is
directly related to closure of the higher order moments, see
Eq. �4.13� in �15�. With our findings here we see that a per-
turbing linear term for the diffusion coefficient may have no
significance; thus the reported contradiction of the recon-
structed Fokker-Planck equation with the second Kármán
equation seems to have no significance, or saying it in other
words, this discrepancy is just a result of an inaccurate esti-
mation. Further applications may include the analysis of
more complex parametrizations of the Kramers-Moyal coef-
ficients and the influence of higher order Kramers-Moyal co-
efficients, thereby offering new insights into the complexity
of turbulence; but it should also be mentioned that this
method of optimization can be applied to other complex sys-
tems, like these mentioned in the Introduction.
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APPENDIX: L-BFGS-B ALGORITHM

For the optimized estimation of the Kramers-Moyal coef-
ficients we apply an iterative procedure, called L-BFGS-B
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algorithm �35–37�. Solving Eq. �5� as proposed in �15� leads
to a conditional PDF of first order pnum�yi−1 ,�i−1 �yi ,�i ,q�. In
order to maximize the agreement between the numerical so-
lutions pn and the PDFs from the empirical data pref, a mea-
sure is needed. Here dM�pn , pref ,q� is used, which is defined
in Eq. �10�. The L-BFGS-B algorithm minimizes the nonlin-
ear function dM�pn , pref ,q�, here d�q� is used as a shorthand
notation, under the constraint L�q�U. L and U represent
the lower and upper bound on q, respectively.

Using the details provided above, an iterative procedure is
started to find the vector q which minimizes the distance
function d�q�. As a first step of each iteration �k� a quadratic
model m�k��q� of d�q� at the iterate q�k� is computed,

m�k��q� ª d�q�k�� + g�k�
T �q − q�k�� + 1

2 �q − q�k��TB�k��q − q�k�� ,

�A1�

where g�k� denotes the gradient of d�q� with respect to q and
B�k� is a limited-memory BFGS approximation to the Hes-
sian.

Because the following steps have to be repeated for each
�k�, the index �k� is omitted for these steps if it does not
change the meaning. As a second step a set of active bounds
has to be found using the gradient projection method. The
projection of an arbitrary point q onto the feasible region is
defined by

P�q,L,U�i = �Li, qi � Li,

qi if qi � �Li,Ui� ,

Ui, qi � Ui.

�A2�

Therefore a piecewise linear path q�s�, which is the projec-
tion of the steepest descent direction at the starting point q0

onto the feasible region, defined by Eq. �A2�, is denoted by

q�s� = P�q0 − sg,L,U� . �A3�

As a third step the generalized Cauchy point qc, which is
defined as the first local minimizer of the function m�k�(q�s�)
on the piecewise linear path q�s�, is computed. The compo-
nents of qc which are at their upper or lower bound, U or L,
comprise the active set A�qc� of variables.

As a fourth step the following quadratic problem over the
subspace of free variables is considered.

min�m�k��q��qi = qi
c ∀ i � A�qc�� , �A4�

subject to L � q � U ∀ i � A�qc� . �A5�

Equation �A4� is solved approximately without the condition
of Eq. �A5� using a direct primal method �36�. The solution
of this unconstrained problem is denoted by 
u. Therefore the
solution of the constrained problem can be written as

q�k+1�,i
s =	q�k�,i

c if i � F ,

q�k�,i
c + �Z
*��k�,i if i � F ,

�A6�

where


* = �*
u �A7�

and

�*
ª max���� � 1,Li − qi

c � �
i
u � Ui − qi

c,i � F� .

�A8�

Z denotes the Nq�Nq
c matrix of unit vectors �i.e., each col-

umn is a column of the identity matrix� that span the sub-
space of free variables at qc, where Nq

c denotes the number of
free variables at qc. F denotes the set of indices correspond-
ing to the set of free variables.

As a last step a line search between the current q�k� and
the approximate minimizer q�k+1�

s is performed, which satis-
fies the strong Wolfe conditions

d�qk+1� � d�qk� + c1�kgk
T�qk+1

s − qk� , �A9�

�gk+1
T �qk+1

s − qk�� � c2�gk
T�qk+1

s − qk�� , �A10�

where ��k� is the step length and c1=10−4 and c2=0.9. Here
the algorithm of More and Thuente �41� is used. The solution
of this line search is used as the next iterate q�k+1�.

The optimization procedure is stopped if the value for
d�q� cannot be reduced by a certain percentage, which will
be in our case around 10−8 or a certain number of iterations
will be reached, which is 50.
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